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Abstract-The elastic behaviour of a long flexible cylinder buried in an infinite elastic medium
and acted on by uniform hoop compressions is examined. A simplified solution is obtained,
which can be used to accurately and efficiently determine the cylinder response.

The simplified theory is used to obtain a parametric solution to the cylinder buckling prob­
lem. The effects of interface condition, elastic ground parameters, load behaviour, and finite
thickness on the critical hoop compression are considered.

A straightforward method is developed for predicting the prebuckling displacements and
bending moments which result from the influence of initial geometrical imperfections and non­
hydrostatic field stresses.

I. INTRODUCTION

When a circular cylindrical tube is buried in a soil or rock mass, the pre-existing field
stresses in the ground will induce hoop compressions in the cylinder. These hoop forces
reduce the cylinder stiffness, and elastic instability may result, or the nonuniformities
present in the system may cause significant displacements which damage the cylinder.

This study considers the problem of a long flexible cylindrical tube buried in an
infinite elastic medium which is initially in a state of hydrostatic compression. Other
authors have examined the elastic stability of these structures[l-6] on the basis that
the hoop compressions for many such structures are approximately uniformly distrib­
uted[7, 8]. The present work begins by examining the application of the shell theories
of Flugge[9] and Herrmann and Armenakas[lO] to this problem, and the linearised
equations of equilibrium are formulated. Linear elastic continuum theory is used to
determine the ground response, and a comparison with the more complex model used
by Forrestal and Herrmann[3] justifies the simpler approach.

An inextensional shell theory is then used to obtain a remarkably simple and ac­
curate solution. This facilitates a parametric study of the buckling problem, where the
effects of finite cylinder thickness, load behaviour, elastic ground parameters, and
interface behaviour are considered. In addition, the simplified solution is used to es­
timate the prebuckling displacements and stress resultants associated with any non­
uniformities present in the system. Nonuniformities in both initial stresses and initial
geometry are examined.

2. STATEMENT OF PROBLEM

The buried tube is assumed to be very long, so that it deforms under conditions
of plane strain. The tube or "tunnel lining" is assumed to behave elastically with
Young's modulus EI and Poisson's ratio VI. The uniform thickness t is assumed to be
small relative to the average radius of the midsurface of the cylinder a, say tfa < 0.05,
so that ring theory may be used to model the structural behaviour. The analysis of
thicker tubes requires a more elaborate theory (see, for example, Renton[ll]) and
because these thicker structures usually fail inelastically, they will not be considered.
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The ground that supports the tube is considered to be a single phase isotropic
material such as a soil or rock mass, with an incrementally elastic behaviour charac­
terised by two constants: Young's modulus E, and Poisson's ratio v,.

Before insertion of the tube, the ground is assumed to be prestressed with a uniform
hydrostatic stress p, which induces a uniform compressive hoop force N in the tube.

Two alternative conditions will be assumed to characterise the soil-structure in­
teraction response at the interface.
(a) A perfectly rough interface across which there is complete compatability of radial

and circumferential dispacements, and full transmission of normal and shear trac­
tions.

(b) A perfectly smooth interface, which does not transmit shear stresses between the
structure and ground, and across which circumferential displacements are not
continuous, due to interfacial slip.
The real interface conditions will, of course, be somewhere between these two

extremes, because there will, in general, be some finite limit to the shear stresses that
can be developed between the cylinder and ground. These two ideal conditions, how­
ever, provide useful bounds on the system response.

It is not feasible to model the precise way in which real ground applies load to a
structure at the soil-surface interface. During the buckling or prebuckling deformations,
the loads applied to the tube may well rotate, see Fig. 2. The exact nature of this "load
behaviour" depends on the response of the ground material, whether it be rock or soil,
cohesive or cohesionless, and is not fully understood. Now, it is well known that the
stability of unsupported rings is significantly influenced by this type of load behav­
iour[l2-14]. In order to gain some insight into this aspect of buried cylinder stability,
then, the tractions transmitted to the cylindrical tube from the ground will be assumed
to exhibit three alternative types of ideal behaviour:
(a) Constant directional behaviour-where the applied tractions remain constant in

direction with respect to the initial tube geometry.
(b) Hydrostatic behaviour-where the applied tractions remain normal to the deform­

ing tube surface.
(c) Centre-directed behaviour-where the tractions remain directed towards the cyl­

inder axis as their points of application move during cylinder deformation.
For the sake of simplicity, it will be assumed that the initial stress effect can be

represented by these three alternate load behaviours. Forrestal and Herrmann[3]
adopted a different approach where they examined the reorientation of the initial
stresses in the continuum and their influence on the incremental tractions at the in­
terface, for a perfectly elastic continuum. It will be shown subsequently that the solution
of Forrestal and Herrmann[3] is significantly different to the simpler ones presented
in this study, only when the ground is soft and perfectly elastic under conditions of
high initial stress, and that, in general, the load behaviour does not significantly affect
the cylinder stability where the ground support is significant.

For the examination of prebuckling displacements, the imperfections in geometry
and nonuniformities of initial stress will be assumed to be small, so that the hoop
compression in the tube remains uniform. The present theory is based on a linearised
shell theory, so that effect of prebuckling displacements on the elastic stability is neg­
lected. An imperfect tube may never, in fact, buckle, and nonlinear theory is required
if this aspect of the problem is to be examined (e.g. [l5]). For the present study, the
word prebuckling will refer to the region where loads are less than those that cause a
perfectly circular tube to buckle. This definition is employed because it is consistent
with the linear theory, and it is further supported by nonlinear analysis which indicates
that imperfect buried flexible tubes do, in fact, buckle[15].

3. EXTENSIONAL SOLUTION

Shell response
In their solution to the buried cylinder problem, Forrestal and Herrmann[3] made

use of the rigorous shell theory developed by Herrmann and Armenakas[lO] for the
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study of the effect of initial stresses on the static and dynamic behaviour of cylindrical
shells. For the present problem, where the initial hoop compressions are assumed to
be uniform, the shell theory reduces to the well-known theory of Flugge[9]. Use of
this Flugge-Herrmann theory to describe the behaviour of a "ring" (or uniform cy­
lindrical shell acting under conditions of plane strain) with flexural stiffness

(la)

and hoop stiffness

(lb)

leads to expressions for the hoop force N and bending moment M in terms of the radial
and circumferential displacements of the ring midsurface wand v respectively, see
Fig. 1,

(2)

where 0 is the circumferential coordinate.
Substitution of these expressions into the linearised differential equations of equi­

librium of the Flugge-Herrmann theory results in expressions for the radial F r and
circumferential Fa tractions at the soil-surface interface. Using the Fourier harmonic
decomposition

those expressions

(w, F r )

(v, Fa)

~ (Wn , (Tn) cos nO
n=2

~ (Vn , Tn) sin nO
n=2

(3)

Elastic
ground

Esys

cylindczr

(4)

Fig. 1. Geometry of buried cylinder.
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for the "nth" Fourier harmonic, where

(5)

The term (nt/2ahn, which appears in the right-hand side of eqn (4), is associated with
the bending moment about the ring midsurface resulting from the shear traction at the
external face of the ring.

In previous studies of this problem, the buckling strength of the buried cylinder
has been presented as a critical pressure Ph acting on the cylinder. Examination of the
static interaction of the cylinder-ground system indicates that this stress acting on the
structure at the interface is some function of, but not necessarily equal to, the hydro­
static field stress within the ground,[16, 17] (pa is the maximum value of N, which
decreases as the ground stiffness increases). In order to make this distinction clear,
the hoop compression N is used to represent the destabilising stresses in the cylinder.

Ground response
It is now necessary to develop a stiffness relation between the coefficients of

ground displacement and tractions applied to the ground at the interface.
In the solution of Forrestal and Herrmann[3], the destabilising effect of initial

stresses on the stiffness of the ideal elastic continuum surrounding the tube were con­
sidered. Nonlinear differential equations of equilibrium were presented which, when
linearised with respect to the initial hydrostatic field stress p, have the same form as
the static equations, but with modified elastic constants

As = A* + P

Gs = G* + p,
(6)

where A* and G* are, respectively, Lame's constant and the shear modulus of the
unstressed ground. Just as these terms were "neglected" by Forrestal and Herrmann,
in the present work the response of the elastic continuum will be determined using
the well-known solution to the static equations of equilibrium in conjunction with elastic
parameters As and Gs measured relative to the continuum in its prestressed state (the
usual geotechnical practice), so that this initial stress effect is included implicitly.

Using linear elastic theory (e.g. Timoshenko and Goodier[l8]) the coefficients of
radial displacement w, circumferential displacement v, radial traction cr, and circum­
ferential traction T are related by

n + 1
n - 1

n + 1
n - 1

+-- ---
Gs XS XS [;'vJ [~:J (7)
a n - 1 n - 1

n + 1 --- n + 1 +--
XS Xs

where XS = 3 - 4vs, the shear modulus Gs = Es/2(l + vs), and the Fourier harmonic
decomposition used is

(w, iT) = L (Wn , iTn ) cos n8
n~2

(v, T) = L (Vn , Tn) sin n8.
n=2

(8)
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a. Constant DirCilctional
BCilhaviour

b. Tractions RotatCil During
DCilformation

Fig. 2. Behaviour of interface tractions during deformation.

Interaction at the interface
In order to specify the soil-structure interaction behaviour at the interface, the

composition of the tractions on the lining Fr and Fa needs to be examined. Each har­
monic of these tractions consists of three components

fTn = fT~ + fT~ + fT~

Tn = T~ + T~ + T~,

(9)

where oi and T' are the incremental tractions which result from any rotation of the initial
tractions during the deformation; fT" and,.a are the tractions which represent the ground
support at the interface; and cT and T

e are any other tractions applied to the interface.
The tractions fTe and T

e represent any additional tractions applied to the perfectly
circular cylinder in its uniformly prestressed state. They are used to introduce the
effects of nonuniformities such as initial geometrical imperfections, nonhydrostatic
initial stress or nonuniform initial stress. For the classical stability problem they are
identically zero.

The ground influences the structure through the initial stress terms oi and T', and
the ground support terms cf' and 'T". As the structure deforms, the uniform radial traction
NJa may rotate through an angle a relative to its initial direction, see Fig. 2, producing
an additional traction in the circumferential direction, T' = Naja. Table 1 shows the
angles of rotation for the three ideal load behaviours. The defQrmation at the interface
is related to the midsurface displacements by

. t ( aw)v'=v+ 2a v-ao
(10)

and this leads to expressions for the coefficients of radial traction fT~ and circumferential
traction T~

(11)

where the values of the coefficients lij are given in Table 2.
The interface condition directly effects the way in which the ground supports the

structure. Table 3 gives details of the soil structure interaction at the interface corre­
sponding to the rough and smooth interface conditions. These relations are used in

Table 1. Rotation of initial traction

Angle of
rotation

Constant
directional

o

Hydrostatic

! (iJWi _ Vi)
a iJll

Centre
directed

a
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Constant directional

Hydrostatic

Centre-directed

Compatability of displacements

Equilibrium of stresses
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Table 2. Load behavior matrix

/11 = 0
/21 = 0

/11 = -I
/21 = 0

/11 = -)

/21 = 0

Table 3. Conditions at the interface

Rough interface

a~ = an
T~ = Tn

/12 = 0
/n = 0

/12 = -n
/n = 0

nt
/12 = -­

2a
/n = 0

Smooth interface

a -(Tn = an

'T~ = 7n = 0

conjunction with eqn (7) to obtain expressions for the coefficients of if' and TO

(12)

where the values of the coefficients mil are given in Table 4.
The problem can now be solved using the various components which have been

defined. Using the Flugge-Herrmann shell theory (4) and (5) in conjunction with eqns
(9), (11), and (12) leads to the expressions

[A: - ~ B:] [iJ [T~] (13)
(J~ ,

where

[m"
mil m" ]A: = An + nt nt
+ 2a mil m22 + 2a ml2

(14)
III

t" ]B~ = B. + [ nt nt
121 + 2a III 122 + 2a 112

and the values of Ii) and mil are provided in Tables 2 and 4, respectively.

Table 4. Ground support matrix.

Rough

Smooth

2Gs [2n(l - vs ) + (I - 2vs )]

mll= a (3-4v
s

)

2G,[n(l - 2vs ) + 2(1 - vs )]

m21 = a (3 - 4v
s

)

mil = 0

m21 = 0

G s /
ml2 = - [en + I) (I + nt 2a)

a

(n - I)
- (3 - 4 (I - nt/2a)]vs )

Gsmn = - [en + I) (I + nt/2a)
a

+ (n - I) (I - nt/2a)]
(3 - 4vs )

ml2 = 0
2Gs n2

- 1
m22 = --;; 2n(l - vs ) + (I - 2vs )
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4. INEXTENSIONAL SOLUTION

Thin rings (tla ~ 1) have hoop stiffnesses relatively high compared to their flexural
stiffnesses and, as a result, deform in bending with little associated extension of the
mid-surface. It would, thus, seem reasonable to neglect this extension when determining
the response of buried cylinders, that is take

1066 = 1. (av + w) = O.
a ae (15)

This assumption leads to a relationship between circumferential and radial displacement
coefficients for the ring

(16)

which is used to simplify the extensional formulation.
The Flugge-Herrmann shell theory can be modified using eqn (15), so that a single

equilibrium equation is developed. Substitution of (3) then yields an expression for the
coefficient of radial displacement of the shell mid-surface.

(17)

where L n and M n represent the effects of load behaviour and ground restraint, re­
spectively, and expressions for them are given in Table 5. After evaluation of Wn using
eqn (17), Vn can be found from (16).

The tabulated values of L n and M n are in two groups. The first column represents
values obtained directly from the extensional theory after the application of eqn (16).
If all terms in tla are neglected, the simpler expressions appearing in the second column
are obtained.

Instability will occur when the denominator in (17) is zero, so that

(18)

Table 5. Factors for load behaviour and soil restraint-Inextensional theory.

Symbol
Description of

condition (I) (2)

o

Gs 4(n2
- I)

a [n - I + xAn + I)]

Gs n2
- I [n _ I +~]

a n2 XS

(n 2
- I)

-n-2-

o

( n
2
n~ I) [I - n G~) ]

- ~ [ I - 2n G~) + n
2 G~r]

Gs (n 2
- I) [n _ I +~]

a n2 XS

+ Gs 2(nt) n
2

- I XS - I
a 2a n Xs

+ Gs (nt)2 [n + I +~]
a 2a Xs

Smooth interface G, 4(n2
- I)

a [n - I + xAn + I)]

Centre-directed
pressure

M n for soil Rough interface
restraint

L n for load Constant
behavior directional

pressure
Hydrostatic

pressure
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The critical hoop compression Ncr is the lowest such value of N, and the critical mode
is the corresponding harmonic ncr'

For hydrostatic load behaviour, rejecting any additional terms in fla, the expression
(18) takes the form:

I) + 2Gs 2n(l - 2vs ) - (I - 2vs)
a n (3 - 4vs )

(l9a)

when the interface is rough and

N D 2 2Gs
- = -(n - I) + --------­
a2 a4 a 2n(1 vs) + (1 - 2vs)

(19b)

when the interface is smooth. Forrestal and Herrmann[3] obtained similar expressions
by simplifying the explicit expressions from their extensional solution. The rough so­
lutions differ somewhat, as a result of the additional initial stress terms Forrestal and
Herrmann[3] employed in determining the ground response, but the simplest expres­
sions for the smooth case are equivalent.

The simplified expressions still need to be examined for a range of modes n, to
determine the critical (lowest) value of hoop compression Ncr. When n is large, it proves
to be effective to approximate the discrete variable n by a continuous variable n, and
to minimise the expressions (19) analytically. For a rough interface it follows that the
critical value of n

and for a smooth interface

with

[
2Gs a3 (I - vs ) J1/3

D (3 - 4vs )

[
2Gs a

3 ---J 1/3

D 4(1 v.,)

Ncr 3Dnz,r----a2 - a4

(20a)

(20b)

(20c)

For the special case of incompressible ground, v.,
undrained conditions,

t as is the case for clays under

(21)

for both interface conditions. It is apparent from eqns (20, 21) that as the relative flexural
stiffness DIGsa3 of the cylinder decreases, the approximate critical harmonic ncr in­
creases.

A number of different solutions to the buried cylinder stability problem have been
developed, and these have been examined by the authors in a recent work[19]. A
comparison of the extensional and inextensional theories indicated that the buckling
deformations are very nearly inextensional, and that the simpler theory can be used
with complete confidence. The differences between formulations based on the Flugge­
Herrmann shell theory and the Donnell shell theory were also examined, and it was
found that either approach leads to a satisfactory solution of the buried tube problem.
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5. PARAMETRIC STUDY
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Introduction
The simple theory which has been developed permits a parametric study of the

buried cylinder problem. This study facilitates the use of the solution, and leads to a
greater understanding of the behaviour of buried cylinders.

Consider a long flexible cylinder, buried at great distance from the surface, under
the influence of pre-existing hydrostatic field stress. A uniform hoop compression N
is generated in the cylindrical shell, which may cause elastic instability in the system.
The critical value of hoop compression can be expressed as

(22)

where D is the flexural rigidity of the cylindrical shell under plane strain conditions;
a is the radius of the cylindrical shell; Gs is the shear modulus of the ground; I is the
influence factor dependent on the interface conditions and Poisson's ratio of the soil,
Fig. 3; Rl is the correction factor for the effect of load behaviour, Fig. 4; and Rr is the
correction factor for the effect of the shell thickness, Fig. 5.

1·0 r---..,--"""==:--,---'---,,---,----,

0·81=-----

0·6

I

04

kqy

0.2 --- rough intqrfoclZ
----- smooth intqrfocq

D
<3.03

Fig. 3. Influence factor for elastic stability.

1·6

1·4

l' 2

1·0
RL

0·8

0·6

0·4

0·2

0
10"5 10-4 10-3 10"l! 10"1

.JL
G.03

Fig. 4. Load behaviour correction factor RL.



938 1. D. MOORE AND J. R. BOOKER

1·2 ...----,-----,.--,...-----r----,
~.ough int<2rfoc<2 1001 ;> t/o :;'O·OO1

1·0
Smooth int<2rfoc<2

0·8 I- -

Rt

0.6 f- -

0·4 I- -

0·2 I- -

D
Gs a3

Fig. 5. Cylinder thickness correction factor R,.

The parametric equation (22) has been chosen on the basis of eqns (20c) and (21),
in conjunction with the critical hoop compression for an unsupported cylinder Ncr =
3D/a2

•

Effect of ground parameters
The most significant factor affecting the stability of any particular buried cylinder

is the relative stiffness of the ground in which it is embedded. Each particular problem
has been characterised in this parametric solution by:
(i) The flexural stiffness of the cylinder relative to the shear modulus of the ground

D/Gsa3
• This directly influences the critical harmonic ncr. as well as the load be­

haviour and thickness effects, see Figs. 4 and 5.
(ii) Poisson's ratio of the ground vs , which also affects the critical hoop compression

directly, see Fig. 3.
The importance of these two parameters will be discussed further in the following
sections.

Effect of interface condition
Examination of Figs. 3 and 5 leads to the following observations concerning the

influence of interface condition:
(i) In general, rough cylinders are more stable than those which are perfectly smooth,

with a maximum difference of about 15% when the ground is relatively stiff.
(ii) Poisson's ratio of the ground V s significantly affects the influence of interface con­

dition, and for the special case of incompressible ground, V s = !, there is no
difference between rough and smooth cylinder response.

(iii) The finite thickness of the tube is significant only if the cylinder is rough, so that
for smooth cylinders R t = 1.

Effect of load behaviour
Three alternative types of load behaviour have been examined. From Fig. 4 it can

be seen that
(i) The correction factor R1 can be omitted for a conservative solution, since R1 ~ 1.

(ii) The effect of load behaviour is negligible if the ground is relatively stiff such that
D/Gsa3 < 10- 3 and ncr ~ 6.

(iii) Centre-directed behaviour is most stable, and hydrostatic the least stable.

Effect of cylinder thickness
Since tractions are applied to the buried tube at the external face, they can induce

bending moments about the midsurface of the ring. This finite thickness effect, Fig. 5,
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(i) is proportional to the relative thickness tla as well as the critical mode of defor­
mation ncr>

(ii) can be significant when the ground is relatively stiff and the critical mode ncr is
high, and

(iii) always acts to increase the stability of the tube and can be neglected to yield a
conservative solution

6. PREBUCKLING DISPLACEMENTS

The behaviour of a cylindrical shell inserted into an infinite elastic continuum has
been examined, and the hoop compressions which cause elastic instability have been
determined. A simple method of calculating the prebuckling displacements and stress
resultants will now be developed, which is valid when the displacements are small and
the initial hoop compression in the tube is approximately uniform.

Various factors affecting buried cylinders introduce nonuniformities, which cause
a cylinder to deform prior to buckling. The equations which have been developed are
for perfectly circular cylindrical shells under conditions of uniform hydrostatic initial
stress. Initial stresses which are slightly nonhydrostatic result in non-zero tractions if
and ,.e, which cause deformation. Similarly, the nonuniform curvature associated with
noncircular initial shape can be represented by non-zero tractions if and ,.e applied to
a perfectly circular ring[19]. Details of these non-zero values of if and,.e are provided
in Table 6.

If the tractions if and ,.e have harmonic coefficients (J"~ and ,.~, then the deformation
of the tube may be calculated using eqn (17). For the case where the load behaviour
is hydrostatic,

«(J"~ - ,.~/n)

2 N 2 ) ,
1) - a2 (n - 1) + M n

(23)

and this expression can be used in conjunction with the condition of zero extension

(24)

to determine the response of the tube.
The stress resultants are found using eqn (2), after substitution of the harmonic

components of w

00 D
M = ~ 2 (n2

- 1) Wn cos n6
n=2 a

00 D
N = ~ 2 (1 - n2 )Wn cos n6.

n=2 a

Table 6. Nonuniformities causing prebuckling displacement.

Description

(25)

Uniform nonhydrostatic
pressure

Imperfect circular shape

Coefficient of lateral
pressure K

Radial imperfection e (6)
Radius = a + e

N
(J'~ = - (I - K)/2

a
N

T~ = - (K - 1)/2
a

(J'~ = T~ = 0 for n ¥- 2

I L2
"en = - e cosn8d8

1l' 0

N en 2
~ = - - (n - I)

a a
T~ = 0
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The elastic stability of a structure is affected by any deformations, and a nonlinear
theory is needed if this factor is to be included in the analysis. The present theory
neglects the influence of prebuckling deformations on elastic stability, but nonlinear
analysis using numerical methods indicates that the performance of the simplified theory
is very satisfactory in the prebuckling region[14, 19]. The simplified theory has also
been used elsewhere to predict the response of tubes under the influence of nonuniform
hoop compression[19J, and comparison with more complex theories[14, 20] indicates
that the simplified theory is quite suitable for solving that more complex problem.

7. SUMMARY AND CONCLUSIONS

The stability of buried circular cylinders subjected to uniform prestress has been
examined. The shell theories of Flugge[9] and Herrmann and Armenakas[lO] were
employed in the formulation of the buried tube stability problem. Three alternative
load behaviours were used to modify the ground response in preference to the more
complex ground model adopted by Forrestal and Herrmann[3] in their solution. The
importance of defining the elastic ground parameters with respect to the ground in its
prestressed state was also noted, even for perfectly elastic continua.

A simplified theory was developed using inextensional shell theory, which accu­
rately reproduces the results of the more complex theories. It was used to obtain a
general parametric solution for the critical hoop compression, in the form of influence
and correction factors for the effects of relative cylinder stiffness, relative thickness,
Poisson's ratio of the ground, interface condition, and loading behaviour. As a result,
the following conclusions have been made:

(1) Loading behaviour, the manner in which the ground applies stresses to the cylinder
as it deforms, can be neglected whenever the ground provides significant support
to the cylinder (usually when the critical mode ncr;;' 6).

(2) The nature of the interface does not affect the elastic stability of cylinders buried
in incompressible soil (when Poisson's ratio is 1/2).

(3) In general, smooth cylinders receive less ground support than those which are
rough, and the difference in critical hoop compression may be up to 15% when
the Poisson's ratio of the ground is low.

(4) For thicker tubes, the shear tractions acting at the interface between the ground
and structure induce bending moments about the shell midsurface which stabilise
the system. It is conservative to neglect this effect.

(5) Use of the parametric solution leads to simple and accurate estimates of the critical
hoop compression for a wide range of ground support conditions.
The simplified theory was extended to permit the estimation of prebuckling dis­

placements and stress resultants for buried cylinders of imperfect shape, or when initial
field stress conditions are nonhydrostatic. The authors have compared the simplified
solution with more complex numerical and analytical solutions in another reference[19].
That comparison demonstrates that the simplified theory can be successfully used to
solve more complex buried tube problems.
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